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Abstract In this paper we present EXMOVES—learned
exemplar-based features for efficient recognition and analy-
sis of actions in videos. The entries in our descriptor are
produced by evaluating a set of movement classifiers over
spatial-temporal volumes of the input video sequences. Each
movement classifier is a simple exemplar-SVM trained on
low-level features, i.e., an SVM learned using a single anno-
tated positive space-time volume and a large number of
unannotated videos. Our representation offers several advan-
tages. First, since our mid-level features are learned from
individual video exemplars, they require minimal amount
of supervision. Second, we show that simple linear classi-
fication models trained on our global video descriptor yield
action recognition accuracy approaching the state-of-the-art
but at orders of magnitude lower cost, since at test-time no
sliding window is necessary and linear models are efficient
to train and test. This enables scalable action recognition,
i.e., efficient classification of a large number of actions even
in massive video databases. Third, we show the general-
ity of our approach by training our mid-level descriptors
from different low-level features and testing them on two
distinct video analysis tasks: human activity recognition as
well as action similarity labeling. Experiments on large-scale
benchmarks demonstrate the accuracy and efficiency of our
proposed method on both these tasks.
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1 Introduction

Human action recognition and matching are important but
still largely-unsolved computer vision problems motivated
by many useful applications, including content-based video
retrieval, automatic surveillance, and human-computer inter-
action. The difficulty of the task stems from the large
intra-class variations in terms of subject and scene appear-
ance, motion, viewing positions, as well as action duration.

We argue that most of the existing action recognition
methods are not designed to handle such heterogeneity.
Typically, these approaches are evaluated only on simple
datasets involving a small number of action classes and
videos recorded in lab-controlled environments (Blank et al.
2005; Veeraraghavan et al. 2006). Furthermore, in the design
of the action recognizer very little consideration is usually
given to the computational cost which, as a result, is often
very high.

We believe that modern applications of action recogni-
tion demand scalable systems that can operate efficiently on
large databases of unconstrained image sequences, such as
YouTube videos. For this purpose, we identify three key-
requirements to address (1) the action recognition system
must be able to handle the substantial variations of motion
and appearance exhibited by realistic videos; (2) the training
of each action classifier must have low-computational com-
plexity and require little human intervention in order to be
able to learn models for a large number of human actions;
(3) the testing of the action classifier must be efficient so
as to enable recognition in large repositories, such as video-
sharing websites.
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This work addresses these requirements by proposing a
global video descriptor that (at the time of this paper sub-
mission) yields state-of-the-art action recognition accuracy
even with simple linear classification models. The feature
entries of our descriptor are obtained by evaluating a set of
movement classifiers over the video. Each of these classi-
fiers is an exemplar-SVM (Malisiewicz et al. 2011) trained
on low-level features (Laptev 2005; Wang et al. 2013) and
optimized to separate a single positive video exemplar from
an army of “background” negative videos. Because only one
annotated video is needed to train an exemplar-SVM, our fea-
tures can be learned with very little human supervision. The
intuition behind our proposed descriptor is that it provides
a semantically-rich description of a video by measuring the
presence/absence of movements similar to those in the exem-
plars. Thus, a linear classifier trained on this representation
will express a new action-class as a linear combination of the
exemplar movements (which we abbreviate as EXMOVES).
We demonstrate that these simple linear classification mod-
els produce surprisingly good results on challenging action
datasets. In addition to yielding high-accuracy, these linear
models are obviously very efficient to train and test, thus
enabling scalable action recognition, i.e., efficient recogni-
tion of many actions in large databases.

Our approach can be viewed as extending to videos the
idea of classifier-based image descriptors (Wang et al. 2009;
Torresani et al. 2010; Li et al. 2010; Deng et al. 2011) which
describe a photo in terms of its relation to a set of prede-
fined object classes. To represent videos, instead of using
object classes, we adopt a set of movement exemplars. In the
domain of action recognition, our approach is most closely
related to the work of Sadanand and Corso (2012), who
have been the first to describe videos in terms of a set of
actions, which they call the Action Bank. The individual fea-
tures in Action Bank are computed by convolving the video
with a set of predefined action templates. This representation
achieves high accuracy on several benchmarks. However, the
template-matching step to extract these mid-level features is
very computationally expensive. As reported in Sadanand
and Corso (2012), extracting mid-level features from a sin-
gle video of UCF50 (Soomro et al. 2013) takes a minimum
of 0.4 h up to a maximum of 34 h. This computational bottle-
neck effectively limits the number of basis templates that can
be used for the representation and constrains the applicability
of the approach to small datasets.

Our first contribution is to replace this prohibitively expen-
sive procedure with a technique that is almost two orders
of magnitude faster. This makes our descriptor applicable to
action recognition in large video databases, where the Action
Bank framework is simply too costly to be used. The second
advantage of our approach is that our mid-level represen-
tation can be built on top of any arbitrary spatial-temporal
low-level features, such as appearance-based descriptors

computed at interest points or over temporal trajectories. This
allows us to leverage the recent advances in design of low-
level features: for example, we show that when we use dense
trajectories Wang et al. (2013) as low-level features, a simple
linear classifier trained on the HMDB51 dataset using our
mid-level representation yields a 41.6 % relative improve-
ment in accuracy over the Action Bank built from the same
set of video exemplars. Furthermore, we demonstrate that our
representation is general in the sense that it can be applied
to different low-level features and it can be used for several
video analysis tasks, such as action recognition and action
similarity labeling. Finally, the experiments reported in this
article show that a linear classifier applied to our mid-level
representation produces consistently much higher accuracy
than the same linear model directly trained on the low-level
features used by our descriptor.

Our EXMOVES are also related to Discriminative Patches
(Jain et al. 2013), which are spatial-temporal volumes
selected from a large collection of random video patches by
optimizing a discriminative criterion. The selected patches
are then used as a mid-level vocabulary for action recogni-
tion. Our approach differs from this prior work in several
ways. As discussed in 4.4, each EXMOVE feature can be
computed from simple summations over individual vox-
els. This model enables the use of Integral Videos (Ke
et al. 2010), which reduce dramatically the time needed
to extract our features. Discriminative Patches cannot take
advantage of the Integral Video speedup and thus they are
much more computationally expensive to compute. This pre-
vents their application in large-scale scenarios. On the other
hand, Discriminative Patches offer the advantage that they
are automatically mined, without any human intervention.
EXMOVES require some amount of human supervision,
although minimal (just one hand-selected volume per exem-
plar). In practice such annotations are inexpensive to obtain.
In our experiments we show that EXMOVES learned from
only 188 volumes greatly outperform Discriminative Patches
using 1040 volumes.

2 Related Work

Human action recognition and analysis have a long history in
the computer vision literature. The previous approaches can
be roughly classified into low-level feature-based, mid-level
feature-based, and top-level action modeling approaches.

2.1 Low-Level Feature-Based Approaches

Low-level feature-based approaches represent videos by low-
level feature primitives. These features can be either sparsely
or densely sampled from the videos. Spatio-temporal inter-
est points can also be applied for sparse features. Efros et
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al. used optical flows to represent and classify actions (Efros
et al. 2003). Laptev and Lindeberg extended the Harris cor-
ner detector to 3D in order to detect spatio-temporal interest
points (STIPs) (Laptev and Lindeberg 2003; Laptev 2005).
Dollár et al. used a 1D Gabor filter and a 2D Gaussian
smoothing kernel to detect Cuboids for behavior recogni-
tion (Dollar et al. 2005). The Cuboids interest point detector
is denser compared to STIPs and allows the users to adjust the
desired level of sparsity. Gorelick et al. proposed Space-Time
Shapes for modeling actions Blank et al. (2005) by solving
a Poisson equation. Derpanis et al. used 3D Gabor filters to
extract “space-time orientation” for action recognition Der-
panis et al. (2010). Motivated by the success of image-based
features such as HOG (Dalal and Triggs 2005) and SIFT
(Lowe 2004), corresponding 3D descriptors were proposed
for video, e.g., HOG3D (Scovanner et al. 2007) and SIFT3D
(Klaser et al. 2008). Ke et al. used boosting to learn volumet-
ric features for event detection (Ke et al. 2005). Quoc et al.
demonstrated that spatio-temporal features can be learned
under unsupervised setting using stacked ISA with strong
performance (Le et al. 2011). Recently, Wang et al. pro-
posed dense trajectories (Wang et al. 2011 and its improved
version, namely improved Dense Trajectories Wang et al.
(2013) which is widely considered the current state-of-the-
art in video features for human action recognition, achieving
the top performance on various benchmarks.

2.2 Mid-Level Feature-Based Approaches

Mid-level feature-based approaches represent videos using a
set of mid-level features, which are usually classifiers trained
on low-level representations. Fathi and Mori used Adaboost
to train a set of mid-level weak classifiers for human action
recognition (Fathi and Mori 2008) using optical flow as low-
level features. Similarly, Ke et al. used a Boosting method to
learn volumetric features for action detection (Ke et al. 2010),
but directly on raw video voxels. Along the line of visual
attributes for static images (Ferrari and Zisserman 2007;
Lampert et al. 2009; Farhadi et al. 2009), Liu et al. proposed to
represent human actions by data-driven attributes and used
them for action recognition (Liu et al. 2011). Inspired by
the success of ObjectBank (Li et al. 2010), Sadanand and
Corso proposed to represent videos as a set of video templates
called Action-Bank (Sadanand and Corso 2012). Despite its
promising discriminative power, the high computational cost
prevents this method to be applicable in large-scale scenar-
ios. Jian et al. used Discriminative Patches to represent videos
for action classification (Jain et al. 2013). The main benefit
of this method is being trained in an unsupervised manner.
However, due to the unsupervised nature of the training, the
method does need to have a large number of mid-level fea-
tures in order to attain a reasonable discriminative capacity
(see results in our experimental section). Our EXMOVES are

closely related to Action Bank and Discriminative Patches as
these are all forms of mid-level representation. Compared to
Action Bank, our mid-level classifiers are linear SVMs while
Action Bank builds on template matching, which is much
more computationally expensive. On the other hand, while
Discriminative Patches are trained without supervision, our
EXMOVES are weakly supervised. In our experiments we
show that EXMOVES achieve better discriminative power
while requiring a minimal amount of annotation, i.e., one
annotated bounding box per mid-level classifier.

2.3 Top-Level Action Modeling Approaches

The top-level action modeling approaches use low-level
feature representations but focus on top-level action mod-
eling to improve the classification accuracy. Wang and Suter
proposed the use of silhouettes to describe human activ-
ities (Wang and Suter 2007). Niebles and Fei-Fei used
bag-of-word representation to model videos for action recog-
nition (Niebles and Fei-Fei 2007). Tran et al. showed metric
learning (Weinberger et al. 2006) can improve action recog-
nition (Tran and Sorokin 2008). Laptev et al. used Boosting
method to classify human action in realistic movies (Laptev
and Prez 2007; Laptev et al. (2008)). Yuan et al. used mutual
information maximization to detect and recognize actions
in videos (Yuan et al. 2009; Yuan et al. (2011)). Yu et al.
used random forest for indexing and retrieving actions in
videos (Yu et al. 2011). Hu et al. used multiple-instance learn-
ing to detect human actions (Hu et al. 2009). Hough transform
was also used to recognize actions (Yu et al. 2012).

Although many of these approaches have been shown to
yield good accuracy on standard human action benchmarks,
they are difficult to scale to recognition in large repositories
as they involve complex feature representations or learning
models, which are too costly to compute on vast datasets.

3 Approach Overview

We explain the approach at a high level using the schematic
illustration in Fig. 1. During an offline stage, our method
learns Na exemplar-movement SVMs (EXMOVES), shown
on the left side of the figure. Each EXMOVE is a binary
classifier optimized to recognize a specific action exemplar
(e.g., an instance of “biking”) and it uses histograms of
quantized space-time low-level features for the classifica-
tion. Note that in order to capture different forms of each
activity, we use multiple exemplars per activity (e.g., mul-
tiple instances of “biking”), each contributing a separate
EXMOVE. The set of learned EXMOVES are then used
as mid-level feature extractors to produce an intermediate
representation for any new input video: we evaluate each
EXMOVE on subvolumes of the input video in order to
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Fig. 1 Overview of our
approach. During an offline
stage, a collection of
exemplar-movement SVMs
(EXMOVES) is learned. Each
EXMOVE is trained using a
single positive video exemplar
and a large number of negative
sequences. These classifiers are
then used as mid-level feature
extractors to produce a
semantically-rich representation
of videos

compute the probability of the action at different space-time
positions in the sequence. Specifically, we slide the subvol-
ume of each EXMOVE exemplar at Ns different scales over
the input video. As discussed in Sect. 4.4, this evaluation can
be performed efficiently by using Integral Videos (Ke et al.
2010). Finally, for each EXMOVE, we perform max-pooling
of the classifier scores within Np spatial-temporal pyramid
volumes. Thus, for any input video this procedure produces
a feature vector with Na × Ns × Np dimensions. Because
the EXMOVE features provide a semantically-rich represen-
tation of the video, even simple linear classification models
trained on our descriptor achieve good action categorization
accuracy.

4 Exemplar-Movement SVMs (EXMOVES)

Our EXMOVE classifiers are linear SVMs applied to his-
tograms of quantized space-time low-level features calcu-
lated from subvolumes of the video. In section 4.1 we
describe the two space-time low-level descriptors used in
our experiments, but any quantize-able appearance or motion
features can be employed in our approach.

In principle, to train each SVM classifier we need a rea-
sonable number of both positive and negative examples so
as to produce good generalization. Unfortunately, we do not
have many positive examples due to the high human cost of
annotating videos. Thus, we resort to training each SVM
using only one positive example, by extending to videos
the exemplar-SVM model first introduced by Malisiewicz et
al. for the case of still images (Malisiewicz et al. 2011).
Specifically, for each positive exemplar, we manually spec-
ify a space-time volume enclosing the action of interest and

excluding the irrelevant portions of the video. The histogram
of quantized low-level space-time features contained in this
volume becomes the representation used to describe the pos-
itive exemplar. Then, our objective is to learn a linear SVM
that separates the positive exemplar from the histograms
computed from all possible subvolumes of the same size in
negative videos.

It may appear that training a movement classifier from a
single example will lead to severe overfitting. However, as
already noted in Malisiewicz et al. (2011), exemplar-SVMs
actually have good generalization as their decision boundary
is tightly constrained by the millions of negative examples
that the classifier must distinguish from the positive one. In a
sense, the classifier is given access to an incredible amount of
training examples to learn what the positive class is not. Fur-
thermore, we use the exemplar-SVMs simply as mid-level
feature extractors to find movements similar to the positive
exemplar. Thus, their individual categorization accuracy is
secondary. In other words, rather than applying the individual
exemplar-SVMs as action recognizers, we use them collec-
tively as building blocks to define our action categorization
model, in a role similar to the weak-learners of boosting tech-
niques (Viola and Jones 2001).

4.1 Low-Level Features Used in EXMOVES

Although any arbitrary low-level description of space-time
points or trajectories can be used in our framework, here we
experiment with the two following representations:

– HOG-HOF-STIPs. Given the input video, we first
extract spatial-temporal interest points (STIPs) (Laptev
2005). At each STIP we compute a histogram of oriented
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gradients (HOG) and a histogram of flows (HOF) (Dalal
et al. 2006) using the implementation in Laptev (2005).
We concatenate the HOG and the HOF descriptor to form
a 162-dimensional vector representing the STIP. Finally,
we run k-means on these vectors to learn a codebook of
D = 5000 cluster centroids. Given the codebook, any
space-time volume in a video is represented in terms of
the histogram of codewords occurring within that vol-
ume. We normalize the final histogram using the L1 norm.

– Dense Trajectories. These are the low-level motion and
appearance descriptors obtained from dense trajectories
according to the algorithm described in Wang et al.
(2013). The trajectories are computed for non-stationary
points using a median-filtered optical flow method and
are truncated every 15 frames. Each trajectory is then
described in terms of its shape (point coordinate features,
30 dimensions), appearance (HOG features, 96 dimen-
sions), optical flow (HOF features, 108 dimensions) and
boundary motion (MBHx and MBHy features, 96 dimen-
sions each). As in Wang et al. (2013), we learn a separate
dictionary for each of these 5 descriptors. We use a code-
book of d = 5000 cluster centroids for each descriptor.
Thus, each space-time volume in a video is then repre-
sented as a vector of D = 25,000 dimensions obtained by
concatenating the 5 histograms of trajectories occurring
within that volume. We L1-normalize the final histogram.

4.2 Learning EXMOVES

The input for learning an EXMOVE consists of a positive
video V+ containing a manually-annotated space-time 3D
box bounding the action of interest xE , and thousands of
negative videos V−

1...N without action volume annotations.
The only requirement on the negative videos is that they must
represent action classes different from the category of the
positive exemplar (e.g., if the exemplar contains the action
dancing, we exclude dancing videos from the negative set).
But this constraint can be simply enforced given action class
labels for the videos, without the need to know the space-
time volumes of these negative actions. For example, tagged
Internet videos (e.g., YouTube sequences) could be used as
negative videos, by choosing action tags different from the
activity of the positive exemplar.

It is worth noting that different movement exemplars will
have different 3D box shapes. For example, we expect a walk-
ing action to require a tall volume while swimming may have
a volume more horizontally elongated. As further discussed
below, we maintain the original shape-ratio of the exemplar
volume in both training and testing. This means that we look
for only tall volumes when detecting walking, and short-and-
wide volumes when searching for the swimming action.

Let xE be the manually-specified volume in the positive
sequence V+.

Let us denote with φ(x) the L1-normalized histogram
of codewords (computed from either HOG-HOF-STIPs or
Dense Trajectories) within a video volume x, i.e., φ(x) =

1
c(x)

[c1(x), . . . , cD(x)]T , where ci (x) is the number of code-
word i occurring in volume x, and c(x) is the total number
of codewords in x, and D is the size of the dictionary. Note
that in the case of Dense Trajectories, each trajectory con-
tributes 5 codewords into the histogram since it is quantized
according to the 5 separate dictionaries.

Adopting the exemplar-SVM method in Malisiewicz et al.
(2011), our exemplar-SVM training procedure learns a linear
classifier f (x) = wTφ(x) + b, by minimizing the following
objective function:

min
w,b

‖w‖2 + C1

∑

x∈V+ s.t. |x∩xE |
|xE | ≥0.5

h
(
wTφ(x) + b

)

+C2

N∑

i=1

∑

x∈V−
i

h
(−wTφ(x) − b

)
(1)

where h(s) = max(0, 1 − s) is the hinge loss, while C1 and
C2 are pre-defined parameters that we set so as to equalize
the unbalanced proportion of positive and negative examples.
Note that the first summation in the objective involves sub-
volumes whose spatial overlap with xE is greater than 50 %
and thus are expected to yield a positive score, while the
second summation is over all negative subvolumes. Unfor-
tunately, direct minimization of the objective in Eq. 1 is not
feasible since it requires optimizing the SVM parameters
on a gigantic number of subvolumes. Thus, we resort to an
alternation scheme similar to that used in Malisiewicz et al.
(2011) and Felzenszwalb et al. (2010): we iterate between 1)
learning the parameters (w, b) given an active set S of neg-
ative volumes and 2) mining new negative volumes with the
current SVM parameters.

We first initialize the parameters of the classifier by tra-
ditional SVM training using the manually-selected volume
xE as positive example and a randomly selected subvolumes
from each of the other videos as negative example. At each
iteration the current SVM is evaluated exhaustively on every
negative video to find violating subvolumes, i.e., subvolumes
yielding an SVM score below exceeding −1. These subvol-
umes are added as negative examples to the active set S to be
used in the successive iterations of SVM learning. Further-
more, our training procedure adds as positive examples the
subvolumes of V+ that have spatial overlap with xE greater
than 50 % and SVM score below 1. We stop the iterative
alternation between these two steps when either no new sub-
volumes are added to the active set or a maximum number
of iterations M is reached. In our implementation we use
M = 10, but we find that in more than 85 % of the cases, the
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Algorithm 1 EXMOVE training

Input: A set of negative videos {V−
1 , . . . ,V−

N } and a manually-selected
volume xE in exemplar video V+.

Output: Parameters (w, b) of exemplar-SVM.
1: S ← {(xE ,+1)}
2: for i = 1 to N do
3: S ← S ∪ {(xi ,−1)} with xi randomly chosen from V−

i
4: for i ter = 1 to M do
5: (w, b) ← svm_training(S)

6: Sold ← S
7: for all x in V+ s.t. wT x + b < 1 & |x∩xE |

|xE | > 0.5 do
8: S ← S ∪ {(x,+1)} //false negative
9: for i = 1 to N do
10: for all x in V−

i s.t. wT x + b > −1 do
11: S ← S ∪ {(x,−1)} //false positive
12: if Sold = S then
13: break

learning procedure converges before reaching this maximum
number of iterations.

The pseudocode of our learning procedure is given in
Algorithm 1. Lines 1–3 initialize the active set. The function
svm_training in line 5 learns a traditional binary linear
SVM using the labeled examples in the active set. Note that
we found that at each iteration we typically have millions of
subvolumes violating the constraints (lines 7–11). In order to
maintain the learning of the SVM feasible, in practice we add
to the active set only the volumes that yield the largest viola-
tions in each video, for a maximum of k− = 3 per negative
video and k+ = 10 for the positive video.

4.3 Calibrating the Ensemble of EXMOVES

The learning procedure described above is applied to each
positive exemplar independently to produce a collection of
EXMOVES. However, because the exemplar classifiers are
trained dis-jointly, their score ranges and distributions may
vary considerably. A standard solution to this problem is to
calibrate the outputs by learning for each classifier a function
that converts the raw SVM score into a proper posterior prob-
ability compatible across different classes. To achieve this
goal we use the procedure proposed by Platt in 1999: for each
exemplar-SVM (wE , bE ) we learn parameters (αE , βE ) to
produce calibrated probabilities through the sigmoid function
g(x; wE , bE , αE , βE ) = 1/[1+exp(αE (wT

Ex+bE )+βE )].
The fitting of parameters (αE , βE ) is performed according
to the iterative optimization described in Platt (1999) using
as labeled examples the positive/negative volumes that are
in the active set at the completion of the EXMOVE training
procedure. As already noted in Malisiewicz et al. (2011), we
also found that this calibration procedure yields a significant
improvement in accuracy since it makes the range of scores
more homogeneous and diminishes the effect of outlier val-
ues.

4.4 Efficient Computation of EXMOVE Scores

Although replacing the template matching procedure of
Action Bank with linear SVMs applied to histograms of
space-time features yields a good computational saving, this
by itself is still not fast enough to be used in large-scale
datasets due to the exhaustive sliding volume scheme. In fact,
the sliding volume scheme is used in both training and testing.
In training, we need to slide the current SVM over negative
videos to find volumes violating the classification constraint.
In testing, we need to slide the entire set of EXMOVE clas-
sifiers over the input video in order to extract the mid-level
features for the subsequent recognition. Below, we describe
a solution to speed up the sliding volume evaluation of the
SVMs.

Let V be an input video of size R × C × T . Given an
EXMOVE with parameters (wE , bE ), we need to efficiently
evaluate it over all subvolumes of V having size equal to the
positive exemplar subvolume xE (in practice, we slide the
subvolume at Ns different scales but for simplicity we illus-
trate the procedure assuming we use the original scale). It
is worth noting that the branch-and-bound method of Lam-
pert et al. (2009) cannot be applied to our problem because it
can only find the subwindow maximizing the classification
score while we need the scores of all subvolumes; moreover
it requires unnormalized histograms.

Instead, we use integral videos (Ke et al. 2010) to effi-
ciently compute the EXMOVE score for each subvolume.
An integral video is a volumetric data-structure having size
equal to the input sequence (in this case R × C × T ). It
is useful to speed up the computation of functions defined
over subvolumes and expressed as cumulative sums over vox-
els, i.e, functions of the form H(x) = ∑

(r,c,t)∈x h(r, c, t),
where (r, c, t) denotes a space-time point in volume x
and h is a function over individual space-time voxels. The
integral video for h at point (r, c, t) is simply an accu-
mulation buffer B storing the sum of h over all voxels at
locations less than or equal to (r, c, t), i.e., B(r, c, t) =∑

r ′≤r
∑

c′≤c
∑

t ′≤t h(r ′, c′, t ′). This buffer can be built with
complexity linear in the video size. Once built, it can be used
to compute H(x) for any subvolume x via a handful of addi-
tions and subtractions of the values in B.

In our case, the use of integral video is enabled by the fact
that the classifier score can be expressed in terms of cumu-
lative sums of individual point contributions, as we illustrate
next. For simplicity we describe the procedure assuming that
φ(x) consists of a single histogram (as is the case for HOG-
HOF-STIPs) but the method is straightforward to adapt for
the scenario where φ(x) is the concatenation of multiple his-
tograms (e.g., the 5 histograms of Dense Trajectories). Let
us indicate with P(x) the set of quantized low-level features
(either STIPs or Dense Trajectories) included in subvolume
x of video V and let i p be the codeword index of a point
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p ∈ P(x). Then we can rewrite the classification score of
exemplar-SVM (w, b) on a subvolume x as follows (we omit
the constant bias term b for brevity):

wTφ(x) = 1

c(x)

D∑

i=1

wi ci (x) =
∑

p∈P(x) wi p∑
p∈P(x) 1

. (2)

Equation 2 shows that the classifier score is expressed as
a ratio where both the numerator and the denominator are
computed as sums over individual voxels. Thus, the classi-
fier score for any x can be efficiently calculated using two
integral videos (one for the numerator, one for the denomi-
nator), without ever explicitly computing the histogram φ(x)

or the inner product between w and φ(x). In the case where
φ(x) contains the concatenation of multiple histograms, then
we would need an integral video for each of the histograms
(thus 5 for Dense Trajectories), in addition to the common
integral video for the denominator.

5 Implementation Details

Training data for EXMOVES. Since our approach shares
many similarities with Action Bank, we adopt training and
design settings similar to those used in Sadanand and Corso
(2012) so as to facilitate the comparison between these two
methods. Specifically, our EXMOVES are learned from the
same set of UCF50 (Soomro et al. 2013) videos used to build
the Action Bank templates. This set consists of 188 sequences
spanning a total of 50 actions. Since the Action Bank volume
annotations are not publicly available, we manually selected
the action volume xE on each of these exemplar sequences to
obtain Na = 188 exemplars. As negative set of videos we use
the remaining 6492 sequences in the UCF50 dataset: for these
videos no manual labeling of the action volume is available
nor it is needed by our method. Action Bank also includes
6 templates taken from other sources but these videos have
not been made publicly available; it also uses 10 templates
taken from the KTH dataset. However, as the KTH videos
are lower-resolution and contain much simpler actions com-
pared to those in UCF50, we have not used them to build
our EXMOVES. In the experiments we show that, while
our descriptor is defined by a smaller number of movement
classifiers (188 instead of 205), the recognition performance
obtained with our mid-level features is consistently on par
with or better than Action Bank.
Parameters of EXMOVE features. In order to compute
the EXMOVE features from a new video, we perform max-
pooling of the EXMOVE scores using a space-time pyramid
based on the same settings as those of Action Bank, i.e.,
Ns = 3 scaled versions of the exemplar volume xE (the scales
are 1, 0.75, 0.5), and Np = 73 space-time volumes obtained
by recursive octree subdivision of the entire video using 3

levels (this yields 1 volume at level 1, 8 subvolumes at level
2, 64 subvolumes at level 3). Thus, the final dimensionality
of our EXMOVE descriptor is Na × Ns × Np = 41,172.

6 Experiments

6.1 Action Recognition

Action classification model. All our action recognition
experiments are performed by training a one-vs-the-rest lin-
ear SVM on the EXMOVES extracted from a set of training
videos. We opted for this classifier as it is very efficient to
train and test, and thus it is a suitable choice for the sce-
nario of large-scale action recognition that we are interested
in addressing. The hyperparameter C of the SVM is tuned
via cross-validation for all baselines, Action Bank, and our
EXMOVES.
Test datasets. We test our approach on the following large-
scale action recognition datasets:

1. HMDB51 (Kuehne et al. 2011): It consists of 6849 image
sequences collected from movies as well as YouTube and
Google videos. They represent 51 action categories. The
results for this dataset are presented using 3-fold cross
validation on the 3 publicly available training/testing
splits.

2. Hollywood-2 (Marszalek et al. 2009): This dataset
includes over 20 hours of video, subdivided in 3669
sequences, spanning 12 action classes. We use the pub-
licly available split of training and testing examples.

3. UCF50: This dataset contains 6676 videos taken from
YouTube for a total of 50 action categories. This dataset
was used in Sadanand and Corso (2012) and Jain et al.
(2013) to train and evaluate Action Bank and Discrimi-
native Patches.

4. UCF101 (Soomro et al. 2013) (part 2): UCF101 is a
superset of UCF50. For this test we only use videos from
action classes 51 to 101 (from now on denoted as part 2),
thus omitting the above-mentioned classes and videos of
UCF50. This leaves a total of 6851 videos and 51 action
classes. We report the accuracy of 25-fold cross valida-
tion using the publicly available training/testing splits.

Comparison of recognition accuracies. We now present
the classification performance obtained with our features
on the four benchmarks described above. We consider in
our comparison three other mid-level video descriptors
that can be used for action recognition with linear SVMs:
Action Bank (Sadanand and Corso 2012), Discriminative
Patches (Jain et al. 2013) as well as histograms of visual
words (BOW) built for the two types of low-level features
that we use in EXMOVES, i.e., HOG-HOF-STIPs and Dense
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Table 1 Comparison of recognition accuracies on four datasets

Low-level
features

Mid-level
descriptor

Descriptor
dimensionality

Datasets

HMDB51 Hollywood-2 UCF50 UCF101 (part 2)

3D Gaussians Action Bank 44, 895 26.9 n/a 57.9 n/a

HOG3D Discriminative Patches 9, 360 n/a n/a 61.2 n/a

HOG-HOF-STIPs BOW 5, 000 20.0 32.6 52.8 49.1

EXMOVES 41, 172 27.7 44.7 63.4 57.2

Dense Trajectories BOW 25, 000 34.4 43.7 81.8 60.9

EXMOVES 41, 172 41.9 56.6 82.8 71.6

Bold values indicate the best performing methods
The classification model is an efficient linear SVM applied to 4 distinct global mid-level descriptors: Action Bank (Sadanand and Corso 2012),
Discriminative Patches (Jain et al. 2013), histogram of space-time visual words (BOW) and our EXMOVES. We consider two different low-level
features to build BOW and EXMOVES: HOG-HOF-STIPs and Dense Trajectories. Our EXMOVES achieve the best recognition accuracy on all
four datasets using Dense Trajectories, and greatly outperform the BOW descriptor for both our choices of low-level features, HOG-HOF-STIPs
and Dense Trajectories

Trajectories. As in Wang et al. (2013), we use a dictionary of
25,000 visual words for Dense Trajectories and 5000 visual
words for HOG-HOF-STIPs. Due to the high computational
complexity of the extraction of Action Bank features, how-
ever, we were unable to test this descriptor on the large-scale
datasets of Hollywood-2 and UCF101. For Discriminative
Patches, we can only report accuracy on UCF50 since this is
the only large-scale dataset on which they were tested in Jain
et al. (2013) and no software to compute these features is
available.

The accuracies achieved by the different descriptors are
summarized in Table 1. From these results we see that our
EXMOVE descriptor built from Dense Trajectories yields
consistently the best results across all four datasets. Further-
more, EXMOVES give always higher accuracy than BOW
built from the same low-level features, for both HOG-HOF-
STIPs and Dense Trajectories. The gap is particularly large
on challenging datasets such as Hollywood-2 and HMDB51.
This underscores the advantageous effect of the movement
exemplars to which we compare the input video in order to
produce the EXMOVE features.

Table 2 lists the individual action recognition accuracies
for the same subset of 13 UCF50 classes analyzed in Jain et al.
(2013). We see that EXMOVES give the highest accuracy on
10 out of these 13 action categories.

In Table 3 we present the recognition accuracy for the indi-
vidual classes of HMDB51 using a linear SVM trained on our
EXMOVES with Dense Trajectories. The best recognition
performance is achieved for “golfing” (accuracy is 96.7 %),
while the worst prediction is for the class “waving” (accuracy
is 5.6 %). Note that random chance would yield an accuracy
of 1.96 %.
Computational cost of mid-level feature extraction. We
want to emphasize that although our EXMOVES are based
on a subset of the exemplars used to build Action Bank,

they always generate equal or higher accuracy. Furthermore,
our approach does so with a speedup of almost two-orders
of magnitude in feature extraction: Table 4 reports the sta-
tistics of the runtime needed to extract EXMOVES and
Action Bank. We used the software provided by the authors
of Sadanand and Corso (2012) to extract Action Bank fea-
tures from input videos. Due to large cost of Action Bank
extraction, we collected our runtime statistics on the smaller-
scale UT-I (Ryoo and Aggarwal 2010) dataset, involving only
120 videos. Runtimes were measured on a single-core Linux
machine with a CPU @ 2.66 GHz. The table reports the
complete time from the input of the video to the output of the
descriptor, inclusive of the time needed to compute low-level
features. The extraction of EXMOVES is on average over 70
times faster than for Action Bank when using HOG-HOF-
STIPs and 11 times faster when using Dense Trajectories.
We can process the entire UT-Interaction dataset with HOG-
HOF-STIPs using a single CPU in 14 h; extracting the Action
Bank features on the same dataset would take 41 days.

We were unable to collect runtime statistics for Discrim-
inative Patches due to the unavailability of the software.
However, we want to point out that this descriptor uses many
more patches than EXMOVES (1040 instead of 188) and it
cannot use the Integral Video speed-up.
Computational cost of action recognition. Finally, we
would like to point out that as shown in Table 1, the accuracies
achieved by an efficient linear SVM trained on EXMOVES
are very close to the best published results of Wang et al.
(2013), which instead were obtained with a much more com-
putationally expensive model, not suitable for scalable action
recognition: they report a top-performance of 46.6 and 58.2 %
on HMDB51 and Hollywood-2, respectively, using an expen-
sive non-linear SVM with an RBF-χ2 kernel applied to BOW
of Dense Trajectories. In our experiments we found that train-
ing a linear SVM on EXMOVES for one of the HMDB51
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Table 2 Recognition accuracies
of our EXMOVES (applied to
Dense Trajectories) compared
with those of Action Bank and
Discriminative Patches using the
same subset of 13 action classes
from UCF50 considered in Jain
et al. (2013)

Action Class Action Bank Discriminative Patches EXMOVES

Basketball 53.84 50.00 56.93

Clean and jerk 85.00 95.65 91.07

Diving 78.79 61.29 96.08

Golf swing 90.32 75.86 90.14

High jump 38.46 55.56 81.30

Javeline throw 45.83 50.00 73.50

Mixing 42.85 55.56 97.16

Pole vault 60.60 84.37 94.38

Pull up 91.67 75.00 96.00

Push ups 85.00 86.36 91.18

Tennis swing 44.12 48.48 85.03

Throw discus 75.00 87.10 93.13

Volleyball spiking 43.48 90.90 89.66

Mean classification 64.23 70.47 87.35

Bold values indicate the best performing methods

classes takes only 6.2 s but learning a kernel-SVM on BOW
of Dense Trajectories requires 25 minutes (thus overhead is
250X); the testing of our linear SVM on a video takes only
7 ms, while the nonlinear SVM is on average more than two
orders of magnitude slower. Its cost depends on the on the
number of support vectors, which varies from a few hun-
dreds to several thousands. Nonlinear SVMs also need more
memory to store the support vectors.
Varying the number of exemplars. In this experiment we
study how the accuracy of our method changes as a function
of the number of EXMOVES used in the descriptor. Starting
from our complete feature vector defined by Na = 188 exem-
plars and having dimensionality Na × Ns × Np = 41,172,
we recursively apply a feature selection procedure that elim-
inates at each iteration one of the EXMOVE exemplars and
removes its associated Ns × Np features from the descriptor.
We apply a variant of multi-class Recursive Feature Elimina-
tion (Chapelle and Keerthi 2008) to determine the EXMOVE
to eliminate at each iteration. This procedure operates as
follows: given a labeled training set of video examples for
K classes, at each iteration we retrain the one-vs-the-rest
linear SVMs for all K classes using the current version of
our feature vector and then we remove from the descriptor
the EXMOVE that is overall “least used” by the K linear
classifiers by looking at the average magnitude of the SVM
parameter vector w for the different EXMOVE sub-blocks.

We perform this analysis on the HDMB51 dataset using
both HOG-HOF-STIPs and Dense Trajectories as low-level
features for EXMOVES. Figure 2 reports the 3-fold cross-
validation error as a function of the number of EXMOVES
used in our descriptor. Interestingly, we see that the accuracy
remains close to the top-performance even when we reduce
the number of exemplars to only 100. This suggests a certain
redundancy in the set of movement exemplars. The accu-

Table 3 Recognition accuracy on the individual classes of HMDB51
using linear SVMs trained on EXMOVES based on Dense Trajectories

Golf 96.7 Laugh 48.9 Smoke 31.1

Pullup 87.8 Ride bike 47.8 Stand 31.1

Pushup 76.7 Turn 47.8 Kick 27.8

Brush hair 75.6 Shoot bow 46.7 Kick ball 26.7

Situp 71.1 Sit 46.7 Walk 26.7

Kiss 68.9 Drink 45.6 Sword 25.6

Catch 65.6 Hit 44.4 Cartwheel 20.0

Shake hands 65.6 Push 43.3 Run 20.0

Hug 62.2 Fall floor 42.2 Sword exercise 18.9

Dribble 61.1 Somersault 41.1 Dive 17.8

Pour 61.1 Shoot ball 38.9 Eat 17.8

Climb 58.9 Talk 37.8 Shoot gun 16.7

Ride horse 56.7 Jump 36.7 Pick 14.4

Flic flac 53.3 Climb stairs 35.6 Punch 11.1

Chew 48.9 Draw sword 35.6 Throw 7.8

Clap 48.9 Smile 33.3 Swing baseball 5.6

Fencing 48.9 Handstand 32.2 Wave 5.6

Note that random chance would yield a recognition rate of 1.96 %

racy begins to drop much more rapidly when fewer than 50
exemplars are used.
The effects of multiple scales and spatio-temporal pyra-
mid levels. We study the effects of varying the number
of scales and the number of spatio-temporal pyramid levels
on EXMOVES. The version of EXMOVES having highest
dimensionality involves three different scales (1, 0.75, 5) and
three different spatio-temporal pyramid levels (1 × 1 × 1,
2 × 2 × 2, and 3 × 3 × 3), as already discussed in the pre-
vious section. Here we vary the number of scales from only
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Table 4 Statistics of time
needed to extract the mid-level
descriptors Action Bank and
EXMOVES

Descriptor Extraction time per video (minutes) # frames per second

Mean Max Min mean

Action Bank 495 1199 132 0.012

EXMOVES w/ HOG-HOF-STIPs 7 16 3 0.82

EXMOVES w/ Dense Trajectory 43 70 29 0.13

The time needed to extract EXMOVES features for the entire UT-I dataset using a single CPU is only 14 h;
instead, it would take more than 41 days to compute Action Bank descriptors for this dataset
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Fig. 2 Accuracy on HMDB51 as a function of the number of
EXMOVES. We use Recursive Feature Elimination to reduce the num-
ber of EXMOVES. The accuracy remains near the state-of-the-art even
when using only 100 exemplars

1 scale (1), 2 scales (1, 0.75), or all 3 scales. We also vary
the number of pyramid levels: only 1 level (level 1), 2 levels
(1 and 2), or all 3 levels. At the lowest dimensionality, we
only use 1 scale and 1 level of pyramid, which gives rise
to a 188-dimensional feature vector. At the highest dimen-
sionality, with 3 scales and 3 pyramid levels, EXMOVES
become 41,172-dimensional feature vectors. Table 5 presents
the action recognition accuracy of EXMOVES varying the
number of scales and pyramid levels on UCF50 and UCF101-
part 2. The empirical results show that EXMOVES do not
benefit much from multiple scales, but their performance is
significantly boosted by the use of multiple spatio-temporal
pyramid levels. Reducing from 3 scales to 2 scales causes
only a 1–2 % in accuracy, while going from 2 scales to 1
scale causes a degradation in accuracy of 2.5–3.5 % on both
datasets. Instead, moving from 3 to 2 pyramid levels the accu-
racy drops by 4–5 %, and reducing the number of pyramid
levels from 2 to 1 degrades the accuracy by 10–12 %. Inter-
estingly, EXMOVES built with 1-scale and 1-pyramid-level
are 188-dimensional and they achieve an accuracy of 68.3 %
on UCF50. This is considerably higher than the accuracies
of Action Bank (Sadanand and Corso 2012) and Discrimina-
tive Patches (Jain et al. 2013) (57.9 and 61.2 %, respectively),
which have much higher dimensionality.

The effects of bounding box annotations. We study the
effects of annotations on our EXMOVES. In this experiment,
we train our EXMOVES without using any bounding box
annotations. We call these features WS-EXMOVES (weakly-
supervised EXMOVES). We note that, as before, we are still
using one positive example and many negative examples to
train our mid-level descriptor, except for not using bounding
box annotations. To train each WS-EXMOVE, we randomly
generate k+ = 10 subvolumes from the positive video and
k− = 3 subvolumes from each negative video. These sub-
volumes are used as positive and negative training examples
to train a linear SVM. Each linear SVM is then calibrated by
the same algorithm as before (Platt 1999). Table 6 compares
the accuracies of WS-EXMOVES and EXMOVES on four
different datasets. On Hollywood-2, the difference is small –
only 0.6 %, due to the small dataset and the reduced number
of classes to discriminate (12-categories). On UCF50 and
UCF101-part 2, the difference is about 2.3–4.8 %, while on
the more challenging HMDB51 dataset the gap is 6.7 %. As
the accuracy drop for not having bounding box annotations
is small, one can even afford to increase the number of exem-
plars to improve the discriminative power of the descriptor
at very little annotation cost.

6.2 Qualitative Results on Action Retrieval

We also qualitatively evaluate our EXMOVES on the task
of action retrieval. In this experiment, given a query video,
we perform simple Top-K retrieval using the Euclidean dis-
tance. Figure 3 shows the 15-nearest neighbors for 4 different
queries using EXMOVES on UCF50. We intentionally chose
queries from classes that can be recognized reliably (“Pom-
mel Horse” and “Punch” ), but also from the hardest category
to recognize (“Basketball” which is often confused with
“Volleyball Spiking” and “’Pizza Tossing”). “Clean and Jerk”
ranks roughly in the middle among all categories in terms of
recognition accuracy with EXMOVES. As shown in Fig. 3,
for the two queries in the categories “Pommel Horse” and
“Punch”, all 15-nearest belong to the same class as the query.
The top-15 results retrieved for the query “Clean and Jerk”
include one incorrect example (belonging to the class “Bench
Press”). The retrieval results for the query belonging to the
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Table 5 Effects of multiple scales and spatio-temporal pyramid levels
on EXMOVES. The recognition accuracy on UCF50 and UCF101-part2
are reported for different numbers of scales and levels of spatio-temporal

pyramid. The EXMOVE dimensionalities for the different settings are
shown in brackets

Datsset # of scales 1 2 3

UCF50 1 pyr. level 68.3 (188) 68.4 (376) 68.4 (564)

2 pyr. levels 74.8 (1,692) 77.1 (3,384) 78.0 (5,076)

3 pyr. levels 77.3 (13,724) 80.1 (27,448) 82.8 (41,172)

UCF101-part2 1 pyr. level 51.9 (188) 54.3 (376) 53.7 (564)

2 pyr. levels 62.0 (1,692) 64.7 (3,384) 66.2 (5,076)

3 pyr. levels 65.4 (13,724) 69.1 (27,448) 71.6 (41,172)

Bold values indicate the best performing methods

Table 6 The effects of bounding box annotations on EXMOVES.
WS-EXMOVES are trained without manual bounding-box annota-
tions, while EXMOVES are learned using a single manually-annotated

bounding box in each video. The action recognition accuracy of WS-
EXMOVES is 1–6 % lower than that of EXMOVES on the HMDB51,
Hollywood-2, UCF50, and UCF101 datasets

Datsset HMDB51 Hollywood-2 UCF50 UCF101-part2

WS-EXMOVES 35.2 56.0 78.0 69.3

EXMOVES 41.9 56.6 82.8 71.6

Bold values indicate the best performing methods

most challenging class (“Basketball”) include many more
mistakes (10 in the top-15).

We also qualitatively evaluate our EXMOVES on the task
of action retrieval across different datasets. Figure 4 shows
the top-5 retrieval results when the query videos are from
HMDB51 and the retrieval database is UCF50. We randomly
selected queries from the two classes having the highest
recognition accuracy (the first and the second query), the
two classes having the worst recognition accuracy (the fifth
and the sixth query), and from two classes with intermedi-
ate accuracy (the third and the fourth query). For the “ride
horse” query, the top-5 results are all correct. The “pull up”
retrieval results include an error (a “Swing” video, which
exhibits appearance and motions similar to those of “pull
up”). Note how for the query “riding bike”, the top-5 results
include one incorrect video of “riding horse”. Finally, the
“push up” query yields three incorrect examples of “bench
press”, which are similar in pose and motions to “push up”.

6.3 Action Similarity Labeling

We now show that our EXMOVES can be applied to tasks
beyond action recognition by presenting results on the prob-
lem of action similarity labeling (Kliper-Gross et al. 2012).
Dataset. We use the ASLAN challenge dataset (Kliper-
Gross et al. 2012) for action similarity labeling. The dataset
consists of 3697 video clips of 432 action categories. Given
a pair of video clips as input, the objective is to determine
whether they contain the “same” action or “different” actions.

Thus, this can be viewed as a binary classification problem.
In Kliper-Gross et al. (2012), the authors define 10 splits
of the dataset. Each split contains 300 pairs of videos with
same actions and 300 video pairs with different actions. The
dataset is difficult because the number of action categories
is large and the action classes are fine-grained. For example,
there are 29 variants of jumping, and 10 distinct categories
of “sitting-up”.
Binary classification model for action similarity label-
ing. In Kliper-Gross et al. (2012) the authors report the
performance of several features (HOG, HOF, HNF (Laptev
2005), and their combination) with 12 different distance met-
rics used as kernels for binary classification of video pairs.
In order to maintain our approach scalable and efficient, we
train a binary linear SVM on the absolute difference of the
two EXMOVE descriptors extracted from the input pair. In
other words, the SVM is trained on the absolute difference
vector to predict whether the two videos contain the same
action or not. Note that the other distances used in Kliper-
Gross et al. (2012), such as the χ2 or other non-linear kernels,
are much more costly to compute. We report the labeling
accuracy as well as the area under ROC curve using tenfold
cross validation as used in Kliper-Gross et al. (2012).
Comparison of features for action similarity labeling.
Table 7 presents the accuracy of our EXMOVES on the sim-
ilarity labeling challenge. We include comparative results
obtained with current state-of-the-art features using the same
binary classification model, i.e., a binary SVM trained on
the absolute difference vector. Our EXMOVES outperform
all single feature descriptors (HOG, HOF, HNF) by 2–3 %
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Pommel Horse

Punch

Clean and Jerk

Basketball

Fig. 3 Action retrieval on UCF50. The left column shows the query
videos. Next to each query we show the 15-nearest neighbors retrieved
using EXMOVES. The incorrectly-retrieved examples (i.e., videos
belonging to a class different from that of the query) are marked with
a red cross. The first two query are from classes that are easy to recog-

nize, the third query is randomly chosen from a class that ranks roughly
in the middle in terms of recognition accuracy. The last query is ran-
domly chosen from the most difficult class to recognize (according to
the confusion matrix). Best viewed in color (Color figure online)
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ride horse

pull up

push up

dive

ride bike

punch

Fig. 4 Cross-dataset action retrieval. The first column shows the query videos from HMDB51. To the right of each query video we show the
5-nearest neighbors retrieved from UCF50. The retrieved examples that have incorrect label are marked with a red cross. Best viewed in color
(Color figure online)

Table 7 Action similarity labeling results. Comparisons between
EXMOVES and current state-of-the art features (Kliper-Gross et al.
2012) using a binary linear SVM trained on the absolute difference vec-
tor, i.e., |x1 − x2| where x1, x2 here denote the feature vectors extracted

from the two input videos. The numbers are accuracies and area under
ROC curve (in parenthesis). EXMOVES outperform other single feature
vectors by 3–4 %, and combined descriptors by 1 %

Feature HOG HOF HNF HOG-HOF-HNF EXMOVES

Acc (AUC) 52.23 (54.41) 53.53 (55.59) 53.75 (55.90) 54.80 (57.01) 55.32 (58.06)

Bold value indicates the best performing methods

on accuracy and 3–4 % on AUC. Our EXMOVES are even
better than the combination of these three feature vectors,
providing an improvement of 0.5 and 1 % on accuracy and
AUC, respectively.

Figure 5 shows qualitative results of action similarity
labeling using EXMOVES for 4 test pairs of videos. Each
row shows an input test pair of video clips (we present three
frame of each video clip). The ground-truth action labels
are marked in blue in the right bottom corner of each image
sequence. The first two test pairs are true positives, i.e., the

linear SVM using EXMOVES correctly labels these pairs
as “same”. It is worth noting that the second test example
is quite difficult as the same actions appearing in different
scales, view, and lighting condition. The third pair causes a
false negative prediction: the SVM using EXMOVES fails
to label this pair as “same,” probably due to the largely dif-
ferent viewpoints of the two video clips. The last row shows
a false positive case. Our system fails to label the two videos
as “different” because of the similar patterns of motions and
poses.
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Fig. 5 Action similarity labeling. Visualizations of action similarity
pairs. Each row represent a test input pair. The binary classifier using
EXMOVES correctly classifies the pairs in the first two rows (true pos-
itives). The third row is a false negative, and the last row is a false
positive. Note that although the two video clips in the second row have

largely different scales and viewpoints, our method is able to correctly
label them as containing the same action. Our method fails to label the
third pair as “different” because of the different viewpoints, and the
fourth pair as “same” because the two videos exhibit similar motions.
Best view in color

7 Conclusions

We have presented an approach for efficient large-scale
analysis of human actions. It centers around the learning of
a mid-level video representation that enables good accuracy
with efficient linear classification models. The benefits of
our features are threefold. First, building our representation
requires very little human intervention, as only one positive
manual annotation is required for each feature entry. Sec-
ond, our approach is easy to scale to large datasets thanks
to low computational cost of EXMOVE extraction and the
good accuracy obtainable with linear classifiers, which are
fast to train and test. Last but not least, our approach is quite
general, as it provides good accuracy with different types of
low-level features and different problems of human action
analysis. Experiments on large-scale benchmarks of action
recognition and action similarity labeling show the accuracy
and efficiency of our approach. To our best knowledge, this
work is the first one experimented on all known large-scale
benchmarks for human action analysis.

Our mid-level features are produced by evaluating a set
of movement classifiers over the input video. An important
question we plan to address in future work is: how many mid-
level classifiers do we need to train before accuracy levels off?
Also, what kind of movement classes are particularly useful
as mid-level features? Currently, we are restricted in the abil-
ity to answer these questions by the scarceness of labeled data

available, in terms of both number of video examples but also
number of action classes. An exciting avenue to resolve these
issues is the design of methods that can learn robust mid-
level classifiers from weakly-labelled data, such as YouTube
videos.

Additional material including software to extract
EXMOVES from videos is available at http://vlg.cs.dartmouth.

edu/exmoves.
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