
Learning Spatiotemporal Features with 3D Convolutional Networks

Du Tran1,2, Lubomir Bourdev1, Rob Fergus1, Lorenzo Torresani2, Manohar Paluri1
1Facebook AI Research, 2Dartmouth College

{dutran,lorenzo}@cs.dartmouth.edu {lubomir,robfergus,mano}@fb.com

Abstract

We propose a simple, yet effective approach for spa-
tiotemporal feature learning using deep 3-dimensional con-
volutional networks (3D ConvNets) trained on a large scale
supervised video dataset. Our findings are three-fold: 1)
3D ConvNets are more suitable for spatiotemporal feature
learning compared to 2D ConvNets; 2) A homogeneous ar-
chitecture with small 3 × 3 × 3 convolution kernels in all
layers is among the best performing architectures for 3D
ConvNets; and 3) Our learned features, namely C3D (Con-
volutional 3D), with a simple linear classifier outperform
state-of-the-art methods on 4 different benchmarks and are
comparable with current best methods on the other 2 bench-
marks. In addition, the features are compact: achieving
52.8% accuracy on UCF101 dataset with only 10 dimen-
sions and also very efficient to compute due to the fast in-
ference of ConvNets. Finally, they are conceptually very
simple and easy to train and use.

1. Introduction
Multimedia on the Internet is growing rapidly result-

ing in an increasing number of videos being shared every
minute. To combat the information explosion it is essen-
tial to understand and analyze these videos for various pur-
poses like search, recommendation, ranking etc. The com-
puter vision community has been working on video analysis
for decades and tackled different problems such as action
recognition [26], abnormal event detection [2], and activity
understanding [23]. Considerable progress has been made
in these individual problems by employing different spe-
cific solutions. However, there is still a growing need for
a generic video descriptor that helps in solving large-scale
video tasks in a homogeneous way.

There are four properties for an effective video descrip-
tor: (i) it needs to be generic, so that it can represent differ-
ent types of videos well while being discriminative. For ex-
ample, Internet videos can be of landscapes, natural scenes,
sports, TV shows, movies, pets, food and so on; (ii) the de-
scriptor needs to be compact: as we are working with mil-
lions of videos, a compact descriptor helps processing, stor-

ing, and retrieving tasks much more scalable; (iii) it needs to
be efficient to compute, as thousands of videos are expected
to be processed every minute in real world systems; and
(iv) it must be simple to implement. Instead of using com-
plicated feature encoding methods and classifiers, a good
descriptor should work well even with a simple model (e.g.
linear classifier).

Inspired by the deep learning breakthroughs in the image
domain [24] where rapid progress has been made in the past
few years in feature learning, various pre-trained convolu-
tional network (ConvNet) models [16] are made available
for extracting image features. These features are the activa-
tions of the network’s last few fully-connected layers which
perform well on transfer learning tasks [47, 48]. However,
such image based deep features are not directly suitable for
videos due to lack of motion modeling (as shown in our
experiments in sections 4,5,6). In this paper we propose
to learn spatio-temporal features using deep 3D ConvNet.
We empirically show that these learned features with a sim-
ple linear classifier can yield good performance on various
video analysis tasks. Although 3D ConvNets were proposed
before [15, 18], to our knowledge this work exploits 3D
ConvNets in the context of large-scale supervised training
datasets and modern deep architectures to achieve the best
performance on different types of video analysis tasks. The
features from these 3D ConvNets encapsulate information
related to objects, scenes and actions in a video, making
them useful for various tasks without requiring to finetune
the model for each task. C3D has the properties that a good
descriptor should have: it is generic, compact, simple and
efficient. To summarize, our contributions in this paper are:

• We experimentally show 3D convolutional deep net-
works are good feature learning machines that model
appearance and motion simultaneously.

• We empirically find that 3 × 3 × 3 convolution kernel
for all layers to work best among the limited set of
explored architectures.

• The proposed features with a simple linear model out-
perform or approach the current best methods on 4 dif-
ferent tasks and 6 different benchmarks (see Table 1).
They are also compact and efficient to compute.

1

Dataset Sport1M UCF101 ASLAN YUPENN UMD Object
Task action recognition action recognition action similarity labeling scene classification scene classification object recognition
Method [29] [39]([25]) [31] [9] [9] [32]
Result 90.8 75.8 (89.1) 68.7 96.2 77.7 12.0
C3D 85.2 85.2 (90.4) 78.3 98.1 87.7 22.3

Table 1. C3D compared to best published results. C3D outperforms all previous best reported methods on a range of benchmarks except
for Sports-1M and UCF101. On UCF101, we report accuracy for two groups of methods. The first set of methods use only RGB frame
inputs while the second set of methods (in parentheses) use all possible features (e.g. optical flow, improved Dense Trajectory).

2. Related Work

Videos have been studied by the computer vision com-
munity for decades. Over the years various problems like
action recognition [26], anomaly detection [2], video re-
trieval [1], event and action detection [30, 17], and many
more have been proposed. Considerable portion of these
works are about video representations. Laptev and Linde-
berg [26] proposed spatio-temporal interest points (STIPs)
by extending Harris corner detectors to 3D. SIFT and HOG
are also extended into SIFT-3D [34] and HOG3D [19] for
action recognition. Dollar et al. proposed Cuboids features
for behavior recognition [5]. Sadanand and Corso built Ac-
tionBank for action recognition [33]. Recently, Wang et al.
proposed improved Dense Trajectories (iDT) [44] which is
currently the state-of-the-art hand-crafted feature. The iDT
descriptor is an interesting example showing that temporal
signals could be handled differently from that of spatial sig-
nal. Instead of extending Harris corner detector into 3D, it
starts with densely-sampled feature points in video frames
and uses optical flows to track them. For each tracker cor-
ner different hand-crafted features are extracted along the
trajectory. Despite its good performance, this method is
computationally intensive and becomes intractable on large-
scale datasets.

With recent availability of powerful parallel machines
(GPUs, CPU clusters), together with large amounts of train-
ing data, convolutional neural networks (ConvNets) [28]
have made a come back providing breakthroughs on visual
recognition [10, 24]. ConvNets have also been applied to
the problem of human pose estimation in both images [12]
and videos [13]. More interestingly these deep networks
are used for image feature learning [7]. Similarly, Zhou et
al. and perform well on transferred learning tasks. Deep
learning has also been applied to video feature learning in
an unsupervised setting [27]. In Le et al. [27], the au-
thors use stacked ISA to learn spatio-temporal features for
videos. Although this method showed good results on ac-
tion recognition, it is still computationally intensive at train-
ing and hard to scale up for testing on large datasets. 3D
ConvNets were proposed for human action recognition [15]
and for medical image segmentation [14, 42]. 3D convo-
lution was also used with Restricted Boltzmann Machines
to learn spatiotemporal features [40]. Recently, Karpathy et
al. [18] trained deep networks on a large video dataset for

video classification. Simonyan and Zisserman [36] used
two stream networks to achieve best results on action recog-
nition.

Among these approaches, the 3D ConvNets approach
in [15] is most closely related to us. This method used a hu-
man detector and head tracking to segment human subjects
in videos. The segmented video volumes are used as inputs
for a 3-convolution-layer 3D ConvNet to classify actions. In
contrast, our method takes full video frames as inputs and
does not rely on any preprocessing, thus easily scaling to
large datasets. We also share some similarities with Karpa-
thy et al. [18] and Simonyan and Zisserman [36] in terms
of using full frames for training the ConvNet. However,
these methods are built on using only 2D convolution and
2D pooling operations (except for the Slow Fusion model
in [18]) whereas our model performs 3D convolutions and
3D pooling propagating temporal information across all the
layers in the network (further detailed in section 3). We also
show that gradually pooling space and time information and
building deeper networks achieves best results and we dis-
cuss more about the architecture search in section 3.2.

3. Learning Features with 3D ConvNets
In this section we explain in detail the basic operations of

3D ConvNets, analyze different architectures for 3D Con-
vNets empirically, and elaborate how to train them on large-
scale datasets for feature learning.

3.1. 3D convolution and pooling

We believe that 3D ConvNet is well-suited for spatiotem-
poral feature learning. Compared to 2D ConvNet, 3D Con-
vNet has the ability to model temporal information better
owing to 3D convolution and 3D pooling operations. In
3D ConvNets, convolution and pooling operations are per-
formed spatio-temporally while in 2D ConvNets they are
done only spatially. Figure 1 illustrates the difference, 2D
convolution applied on an image will output an image, 2D
convolution applied on multiple images (treating them as
different channels [36]) also results in an image. Hence,
2D ConvNets lose temporal information of the input sig-
nal right after every convolution operation. Only 3D con-
volution preserves the temporal information of the input
signals resulting in an output volume. The same phenom-
ena is applicable for 2D and 3D polling. In [36], although

2D convolution

output

3D convolution

output
output

2D convolution on multiple frames(a) (b) (c)

H

W

L

k

k
L H

W

L

k

k
d < L

k

kH

W

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 × 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 × 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c× l × h× w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d×k×k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 × 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3× 16× 128× 171. We also use jittering by using random
crops with a size of 3 × 16 × 112 × 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 × 2 × 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 × 2 × 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

0 2 4 6 8 10 12 14 16

0.2

0.25

0.3

0.35

0.4

0.45

0.5

epoch

cl
ip

 a
cc

ur
ac

y

depth−1
depth−3
depth−5
depth−7

0 2 4 6 8 10 12 14 16

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

epoch

cl
ip

 a
cc

ur
ac

y

depth−3
increase
descrease

Figure 2. 3D convolution kernel temporal depth search. Action
recognition clip accuracy on UCF101 test split-1 of different ker-
nel temporal depth settings. 2D ConvNet performs worst and 3D
ConvNet with 3× 3× 3 kernels performs best among the experi-
mented nets.

17K parameters fewer or more from each other. The biggest
difference in number of parameters is between depth-1 net
and depth-7 net where depth-7 net has 51K more parame-
ters which is less than 0.3% of the total of 17.5 millions pa-
rameters of each network. This indicates that the learning
capacity of the networks are comparable and the differences
in number of parameters should not affect the results of our
architecture search.

3.2. Exploring kernel temporal depth

We train these networks on the train split 1 of UCF101.
Figure 2 presents clip accuracy of different architectures on
UCF101 test split 1. The left plot shows results of nets with
homogeneous temporal depth and the right plot presents re-
sults of nets that changing kernel temporal depth. Depth-
3 performs best among the homogeneous nets. Note that
depth-1 is significantly worse than the other nets which we
believe is due to lack of motion modeling. Compared to the
varying temporal depth nets, depth-3 is the best performer,
but the gap is smaller. We also experiment with bigger spa-
tial receptive field (e.g. 5 × 5) and/or full input resolution
(240 × 320 frame inputs) and still observe similar behav-
ior. This suggests 3 × 3 × 3 is the best kernel choice for
3D ConvNets (according to our subset of experiments) and
3D ConvNets are consistently better than 2D ConvNets for
video classification. We also verify that 3D ConvNet con-
sistently performs better than 2D ConvNet on a large-scale
internal dataset, namely I380K.

3.3. Spatiotemporal feature learning

Network architecture: Our findings in the previous sec-
tion indicate that homogeneous setting with convolution
kernels of 3 × 3 × 3 is the best option for 3D ConvNets.
This finding is also consistent with a similar finding in 2D
ConvNets [37]. With a large-scale dataset, one can train a
3D ConvNet with 3×3×3 kernel as deep as possible subject
to the machine memory limit and computation affordability.
With current GPU memory, we design our 3D ConvNet to
have 8 convolution layers, 5 pooling layers, followed by two
fully connected layers, and a softmax output layer. The net-
work architecture is presented in figure 3. For simplicity,

we call this net C3D from now on. All of 3D convolution
filters are 3 × 3 × 3 with stride 1 × 1 × 1. All 3D pooling
layers are 2× 2× 2 with stride 2× 2× 2 except for pool1
which has kernel size of 1 × 2 × 2 and stride 1 × 2 × 2
with the intention of preserving the temporal information in
the early phase. Each fully connected layer has 4096 output
units.

Dataset. To learn spatiotemproal features, we train
our C3D on Sports-1M dataset [18] which is currently the
largest video classification benchmark. The dataset consists
of 1.1 million sports videos. Each video belongs to one
of 487 sports categories. Compared with UCF101, Sports-
1M has 5 times the number of categories and 100 times the
number of videos.

Training: Training is done on the Sports-1M train split.
As Sports-1M has many long videos, we randomly extract
five 2-second long clips from every training video. Clips are
resized to have a frame size of 128 × 171. On training, we
randomly crop input clips into 16×112×112 crops for spa-
tial and temporal jittering. We also horizontally flip them
with 50% probability. Training is done by SGD with mini-
batch size of 30 examples. Initial learning rate is 0.003,
and is divided by 2 every 150K iterations. The optimization
is stopped at 1.9M iterations (about 13 epochs). Beside the
C3D net trained from scratch, we also experiment with C3D
net fine-tuned from the model pre-trained on I380K.

Sports-1M classification results: Table 2 presents
the results of our C3D networks compared with Deep-
Video [18] and Convolution pooling [29]. We use only a
single center crop per clip, and pass it through the network
to make the clip prediction. For video predictions, we av-
erage clip predictions of 10 clips which are randomly ex-
tracted from the video. It is worth noting some setting dif-
ferences between the comparing methods. DeepVideo and
C3D use short clips while Convolution pooling [29] uses
much longer clips. DeepVideo uses more crops: 4 crops per
clip and 80 crops per video compared with 1 and 10 used by
C3D, respectively. The C3D network trained from scratch
yields an accuracy of 84.4% and the one fine-tuned from
the I380K pre-trained model yields 85.5% at video top-
5 accuracy. Both C3D networks outperform DeepVideo’s
networks. C3D is still 5.6% below the method of [29].
However, this method uses convolution pooling of deep
image features on long clips of 120 frames, thus it is not
directly comparable to C3D and DeepVideo which oper-
ate on much shorter clips. We note that the difference in
top-1 accuracy for clips and videos of this method is small
(1.6%) as it already uses 120-frame clips as inputs. In prac-
tice, convolution pooling or more sophisticated aggregation
schemes [29] can be applied on top of C3D features to im-
prove video hit performance.

C3D video descriptor: After training, C3D can be used
as a feature extractor for other video analysis tasks. To

Conv1a
64

Conv2a
128

Conv3a
256

Conv3b
256

Conv4a
512

Conv4b
512

Conv5a
512

Conv5b
512Po

ol
1 fc6

4096
fc7
4096Po

ol
3

Po
ol
4

Po
ol
2

Po
ol
5

so
ft
m
ax

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer.
All 3D convolution kernels are 3× 3× 3 with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box.
The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are 2× 2× 2, except for pool1 is 1× 2× 2. Each fully
connected layer has 4096 output units.

Method Number of Nets Clip hit@1 Video hit@1 Video hit@5
DeepVideo’s Single-Frame + Multires [18] 3 nets 42.4 60.0 78.5
DeepVideo’s Slow Fusion [18] 1 net 41.9 60.9 80.2
Convolution pooling on 120-frame clips [29] 3 net 70.8* 72.4 90.8
C3D (trained from scratch) 1 net 44.9 60.0 84.4
C3D (fine-tuned from I380K pre-trained model) 1 net 46.1 61.1 85.2

Table 2. Sports-1M classification result. C3D outperforms [18] by 5% on top-5 video-level accuracy. (*)We note that the method of [29]
uses long clips, thus its clip-level accuracy is not directly comparable to that of C3D and DeepVideo.

extract C3D feature, a video is split into 16 frame long
clips with a 8-frame overlap between two consecutive clips.
These clips are passed to the C3D network to extract fc6
activations. These clip fc6 activations are averaged to
form a 4096-dim video descriptor which is then followed
by an L2-normalization. We refer to this representation as
C3D video descriptor/feature in all experiments, unless we
clearly specify the difference.

What does C3D learn? We use the deconvolution
method explained in [46] to understand what C3D is learn-
ing internally. We observe that C3D starts by focusing on
appearance in the first few frames and tracks the salient mo-
tion in the subsequent frames. Figure 4 visualizes deconvo-
lution of two C3D conv5b feature maps with highest acti-
vations projected back to the image space. In the first exam-
ple, the feature focuses on the whole person and then tracks
the motion of the pole vault performance over the rest of the
frames. Similarly in the second example it first focuses on
the eyes and then tracks the motion happening around the
eyes while applying the makeup. Thus C3D differs from
standard 2D ConvNets in that it selectively attends to both
motion and appearance. We provide more visualizations in
the supplementary material to give a better insight about the
learned feature.

4. Action recognition
Dataset: We evaluate C3D features on UCF101

dataset [38]. The dataset consists of 13, 320 videos of 101
human action categories. We use the three split setting pro-
vided with this dataset.

Classification model: We extract C3D features and in-
put them to a multi-class linear SVM for training models.
We experiment with C3D descriptor using 3 different nets:
C3D trained on I380K, C3D trained on Sports-1M, and C3D
trained on I380K and fine-tuned on Sports-1M. In the mul-

tiple nets setting, we concatenate the L2-normalized C3D
descriptors of these nets.

Baselines: We compare C3D feature with a few base-
lines: the current best hand-crafted features, namely im-
proved dense trajectories (iDT) [44] and the popular-used
deep image features, namely Imagenet [16], using Caffe’s
Imagenet pre-train model. For iDT, we use the bag-of-word
representation with a codebook size of 5000 for each feature
channel of iDT which are trajectories, HOG, HOF, MBHx,
and MBHy. We normalize histogram of each channel sepa-
rately using L1-norm and concatenate these normalized his-
tograms to form a 25K feature vector for a video. For Im-
agenet baseline, similar to C3D, we extract Imagenet fc6
feature for each frame, average these frame features to make
video descriptor. A multi-class linear SVM is also used for
these two baselines for a fair comparison.

Results: Table 3 presents action recognition accuracy
of C3D compared with the two baselines and current best
methods. The upper part shows results of the two base-
lines. The middle part presents methods that use only RGB
frames as inputs. And the lower part reports all current best
methods using all possible feature combinations (e.g. opti-
cal flows, iDT).

C3D fine-tuned net performs best among three C3D nets
described previously. The performance gap between these
three nets, however, is small (1%). From now on, we refer
to the fine-tuned net as C3D, unless otherwise stated. C3D
using one net which has only 4, 096 dimensions obtains an
accuracy of 82.3%. C3D with 3 nets boosts the accuracy
to 85.2% with the dimension is increased to 12, 288. C3D
when combined with iDT further improves the accuracy to
90.4%, while when it is combined with Imagenet, we ob-
serve only 0.6% improvement. This indicates C3D can well
capture both appearance and motion information, thus there
is no benefit to combining with Imagenet which is an ap-

Figure 4. Visualization of C3D model, using the method from [46]. Interestingly, C3D captures appearance for the first few frames but
thereafter only attends to salient motion. Best viewed on a color screen.

Method Accuracy (%)
Imagenet + linear SVM 68.8
iDT w/ BoW + linear SVM 76.2
Deep networks [18] 65.4
Spatial stream network [36] 72.6
LRCN [6] 71.1
LSTM composite model [39] 75.8
C3D (1 net) + linear SVM 82.3
C3D (3 nets) + linear SVM 85.2
iDT w/ Fisher vector [31] 87.9
Temporal stream network [36] 83.7
Two-stream networks [36] 88.0
LRCN [6] 82.9
LSTM composite model [39] 84.3
Conv. pooling on long clips [29] 88.2
LSTM on long clips [29] 88.6
Multi-skip feature stacking [25] 89.1
C3D (3 nets) + iDT + linear SVM 90.4

Table 3. Action recognition results on UCF101. C3D compared
with baselines and current state-of-the-art methods. Top: sim-
ple features with linear SVM; Middle: methods taking only RGB
frames as inputs; Bottom: methods using multiple feature combi-
nations.

pearance based deep feature. On the other hand, it is bene-
ficial to combine C3D with iDT as they are highly comple-
mentary to each other. In fact, iDT are hand-crafted features
based on optical flow tracking and histograms of low-level
gradients while C3D captures high level abstract/semantic
information.

C3D with 3 nets achieves 85.2% which is 9% and 16.4%
better than the iDT and Imagenet baselines, respectively.
On the only RGB input setting, compared with CNN-based
approaches, Our C3D outperforms deep networks [18] and
spatial stream network in [36] by 19.8% and 12.6%, respec-
tively. Both deep networks [18] and spatial stream network
in [36] use AlexNet architecture. While in [18], the net is
fine-tuned from their model pre-trained on Sports-1M, spa-
tial stream network in [36] is fine-tuned from Imagenet pre-
trained model. Our C3D is different from these CNN-base

0 50 100 150 200 250 300 350 400 450 500
30

35

40

45

50

55

60

65

70

75

80

Number of dimensions
Ac

cu
ra

cy

Imagenet
iDT
C3D

Figure 5. C3D compared with Imagenet and iDT in low dimen-
sions. C3D, Imagenet, and iDT accuracy on UCF101 using PCA
dimensionality reduction and a linear SVM. C3D outperforms Im-
agenet and iDT by 10-20% in low dimensions.

Imagenet C3D
Figure 6. Feature embedding. Feature embedding visualizations
of Imagenet and C3D on UCF101 dataset using t-SNE [43]. C3D
features are semantically separable compared to Imagenet suggest-
ing that it is a better feature for videos. Each clip is visualized as a
point and clips belonging to the same action have the same color.
Best viewed in color.

methods in term of network architecture and basic opera-
tions. In addition, C3D is trained on Sports-1M and used as
is without any finetuning. Compared with Recurrent Neural
Networks (RNN) based methods, C3D outperforms Long-
term Recurrent Convolutional Networks (LRCN) [6] and
LSTM composite model [39] by 14.1% and 9.4%, respec-
tively. C3D with only RGB input still outperforms these
two RNN-based methods when they used both optical flows
and RGB as well as the temporal stream network in [36].

However, C3D needs to be combined with iDT to outper-
form two-stream networks [36], the other iDT-based meth-
ods [31, 25], and the method that focuses on long-term mod-
eling [29]. Apart from the promising numbers, C3D also
has the advantage of simplicity compared to the other meth-
ods.

C3D is compact: In order to evaluate the compactness
of C3D features we use PCA to project the features into
lower dimensions and report the classification accuracy of
the projected features on UCF101 [38] using a linear SVM.
We apply the same process with iDT [44] as well as Ima-
genet features [7] and compare the results in Figure 5. At
the extreme setting with only 10 dimensions, C3D accuracy
is 52.8% which is more than 20% better than the accuracy
of Imagenet and iDT which are about 32%. At 50 and 100
dim, C3D obtains an accuracy of 72.6% and 75.6% which
are about 10-12% better than Imagenet and iDT. Finally,
with 500 dimensions, C3D is able to achieve 79.4% accu-
racy which is 6% better than iDT and 11% better than Im-
agenet. This indicates that our features are both compact
and discriminative. This is very helpful for large-scale re-
trieval applications where low storage cost and fast retrieval
are crucial.

We qualitatively evaluate our learned C3D features to
verify if it is a good generic feature for video by visual-
izing the learned feature embedding on another dataset. We
randomly select 100K clips from UCF101, then extract fc6
features for those clips using for features from Imagenet and
C3D. These features are then projected to 2-dimensional
space using t-SNE [43]. Figure 6 visualizes the feature
embedding of the features from Imagenet and our C3D on
UCF101. It is worth noting that we did not do any fine-
tuning as we wanted to verify if the features show good
generalization capability across datasets. We quantitatively
observe that C3D is better than Imagenet.

5. Action Similarity Labeling
Dataset: The ASLAN dataset consists of 3, 631 videos

from 432 action classes. The task is to predict if a given
pair of videos belong to the same or different action. We
use the prescribed 10-fold cross validation with the splits
provided with the dataset. This problem is different from
action recognition, as the task focuses on predicting action
similarity not the actual action label. The task is quite chal-
lenging because the test set contains videos of “never-seen-
before” actions.

Features: We split videos into 16-frame clips with an
overlap of 8 frames. We extract C3D features: prob, fc7,
fc6, pool5 for each clip. The features for videos are com-
puted by averaging the clip features separately for each type
of feature, followed by an L2 normalization.

Classification model: We follow the same setup used
in [21]. Given a pair of videos, we compute the 12 different

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tru
e

po
si

tiv
e

ra
te

C3D
Human Performance
STIP [21]
OSSML [22]
MIP [20]
MIP+STIP+MBH [11]
iDT+FV [45]
Imagenet
Random Chance

Figure 7. Action similarity labeling result. ROC curve of C3D
evaluated on ASLAN. C3D achieves 86.5% on AUC and outper-
forms current state-of-the-art by 11.1%.

Method Features Model Acc. AUC
[21] STIP linear 60.9 65.3
[22] STIP metric 64.3 69.1
[20] MIP metric 65.5 71.9
[11] MIP+STIP+MBH metric 66.1 73.2
[45] iDT+FV metric 68.7 75.4

Baseline Imagenet linear 67.5 73.8
Ours C3D linear 78.3 86.5

Table 4. Action similarity labeling result on ASLAN. C3D sig-
nificantly outperforms state-of-the-art method [45] by 9.6% in ac-
curacy and by 11.1% in area under ROC curve.

distances provided in [21]. With 4 types of features, we ob-
tain 48-dimensional (12 × 4 = 48) feature vector for each
video pair. As these 48 distances are not comparable to each
other, we normalize them independently such that each di-
mension has zero mean and unit variance. Finally, a linear
SVM is trained to classify video pairs into same or differ-
ent on these 48-dim feature vectors. Beside comparing with
current methods, we also compare C3D with a strong base-
line using deep image-based features. The baseline has the
same setting as our C3D and we replace C3D features with
Imagenet features.

Results: We report the result of C3D and compare with
state-of-the-art methods in table 4. While most current
methods use multiple hand-crafted features, strong encod-
ing methods (VLAD, Fisher Vector), and complex learning
models, our method uses a simple averaging of C3D fea-
tures over the video and a linear SVM. C3D significantly
outperforms state-of-the-art method [45] by 9.6% on accu-
racy and 11.1% on area under ROC curve (AUC). Imagenet
baseline performs reasonably well which is just 1.2% below
state-of-the-art method [45], but 10.8% worse than C3D due
to lack of motion modeling. Figure 7 plots the ROC curves
of C3D compared with current methods and human perfor-
mance. C3D has clearly made a significant improvement
which is a halfway from current state-of-the-art method to

Dataset [4] [41] [8] [9] Imagenet C3D
Maryland 43.1 74.6 67.7 77.7 87.7 87.7
YUPENN 80.7 85.0 86.0 96.2 96.7 98.1

Table 5. Scene recognition accuracy. C3D using a simple linear
SVM outperforms current methods on Maryland and YUPENN.

human performance (98.9%).

6. Scene and Object Recognition
Datasets: For dynamic scene recognition, we evaluate

C3D on two benchmarks: YUPENN [4] and Maryland [35].
YUPENN consists of 420 videos of 14 scene categories and
Maryland has 130 videos of 13 scene categories. For object
recognition, we test C3D on egocentric dataset [32] which
consists 42 types of everyday objects. A point to note, this
dataset is egocentric and all videos are recorded in a first
person view which have quite different appearance and mo-
tion characteristics than any of the videos we have in the
training dataset.

Classification model: For both datasets, we use the
same setup of feature extraction and linear SVM for classifi-
cation and follow the same leave-one-out evaluation proto-
col as described by the authors of these datasets. For object
dataset, the standard evaluation is based on frames. How-
ever, C3D takes a video clip of length 16 frames to extract
the feature. We slide a window of 16 frames over all videos
to extract C3D features. We choose the ground truth label
for each clip to be the most frequently occurring label of the
clip. If the most frequent label in a clip occurs fewer than
8 frames, we consider it as negative clip with no object and
discard it in both training and testing. We train and test C3D
features using linear SVM and report the object recognition
accuracy. We follow the same split provided in [32]. We
also compare C3D with a baseline using Imagenet feature
on these 3 benchmarks.

Results: Table 5 reports our C3D results and compares it
with the current best methods. On scene classification, C3D
outperforms state-of-the-art method [9] by 10% and 1.9%
on Maryland and YUPENN respectively. It is worth noth-
ing that C3D uses only a linear SVM with simple averaging
of clip features while the second best method [9] uses dif-
ferent complex feature encodings (FV, LLC, and dynamic
pooling). The Imagenet baseline achieves similar perfor-
mance with C3D on Maryland and 1.4% lower than C3D
on YUPENN. On object recognition, C3D obtains 22.3%
accuracy and outperforms [32] by 10.3% with only linear
SVM where the comparing method used RBF-kernel on
strong SIFT-RANSAC feature matching. Compared with
Imagenet baseline, C3D is still 3.4% worse. This can be
explained by the fact that C3D uses smaller input resolution
(128 × 128) compared to full-size resolution (256 × 256)
using by Imagenet. Since C3D is trained only on Sports-
1M videos without any fine-tuning while Imagenet is fully
trained on 1000 object categories, we did not expect C3D

Method iDT Brox’s Brox’s C3D
Usage CPU CPU GPU GPU
RT (hours) 202.2 2513.9 607.8 2.2
FPS 3.5 0.3 1.2 313.9
x Slower 91.4 1135.9 274.6 1

Table 6. Runtime analysis on UCF101. C3D is 91x faster than
improved dense trajectories [44] and 274x faster than Brox’s GPU
implementation in OpenCV.

to work that well on this task. The result is very surprising
and shows how generic C3D is on capturing appearance and
motion information in videos.

7. Runtime Analysis

We compare the runtime of C3D and with iDT [44] and
the Temporal stream network [36]. For iDT, we use the code
kindly provided by the authors [44]. For [36], there is no
public model available to evaluate. However, this method
uses Brox’s optical flows [3] as inputs. We manage to eval-
uate runtime of Brox’s method using two different versions:
CPU implementation provided by the authors [3] and the
GPU implementation provided in OpenCV.

We report runtime of the three above-mentioned methods
to extract features (including I/O) for the whole UCF101
dataset in table 6 using using a single CPU or a single K40
Tesla GPU. [36] reported a computation time (without I/O)
of 0.06s for a pair of images. In our experiment, Brox’s
GPU implementation takes 0.85-0.9s per image pair includ-
ing I/O. Note that this is not a fair comparison for iDT as it
uses only CPU. We cannot find any GPU implementation
of this method and it is not trivial to implement a parallel
version of this algorithm on GPU. Note that C3D is much
faster than real-time, processing at 313 fps while the other
two methods have a processing speed of less than 4 fps.

8. Conclusions

In this work we try to address the problem of learn-
ing spatiotemporal features for videos using 3D ConvNets
trained on large-scale video datasets. We conducted a sys-
tematic study to find the best temporal kernel length for
3D ConvNets. We showed that C3D can model appear-
ance and motion information simultaneously and outper-
forms the 2D ConvNet features on various video analysis
tasks. We demonstrated that C3D features with a linear
classifier can outperform or approach current best methods
on different video analysis benchmarks. Last but not least,
the proposed C3D features are efficient, compact, and ex-
tremely simple to use.

C3D source code and pre-trained model are available
at http://vlg.cs.dartmouth.edu/c3d.

Acknowledgment: we would like to thank Yann Lecun
for his valuable feedback, Nikhil Johri and Engineering at
Facebook AI Research for data and infrastructure support.

http://vlg.cs.dartmouth.edu/c3d

0 2 4 6 8 10 12 14 16
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

epoch

cl
ip

 a
cc

ur
ac

y

net−128
net−64
net−256

Figure 8. 3D ConvNets with different input resolutions. Action
recognition clip accuracy on UCF101 test split-1 of 3D ConvNets
with different input resolutions.

Appendix A: Effects of Input Resolution

As part of the architecture study, we examine the ef-
fects of input resolution on 3D ConvNets. We use the same
common network setting described in section 3. We fix all
convolution kernels to 3 × 3 × 3 and vary the input reso-
lutions to study the effects. We experiment with 3 differ-
ent nets with input resolutions of 64 × 64, 128 × 128, and
256 × 256, namely net-64, net-128, and net-256, respec-
tively. Note that net-128 is equivalent to the depth-3 net in
section 3.2. Because of the difference in input resolutions,
these nets have different output size at the last pooling layer,
thus leading to a significant difference in terms of number
of parameters. Table 7 reports the numbers of parameters
and the training time of these nets. Figure 8 presents the
clip accuracy of these nets on UCF101 test split-1. Net-128
outperforms net-64 by 3.1% and attains a comparable ac-
curacy with net-256. This indicates that net-128 provides a
good trade-off between training time, accuracy, and mem-
ory consumption. We note that with the current GPU mem-
ory limit, one has to use model parallelism to train C3D
with 256× 256 input resolution.

Net net-64 net-128 net-256
of params (M) 11.1 17.5 34.8
Train time (mins/epoch) 92 270 1186

Table 7. Number of parameters and training time comparison of
3D ConvNets with different input resolutions. Note that net-128 is
equivalent to the depth-3 net in the paper.

Appendix B: Visualization of C3D Learned Fea-
tures

For a better understanding of what C3D learned inter-
nally, we provide additional visualizations using deconvo-

lution.
Decovolutions of C3D: We randomly select 20K clips

from UCF101. We group clips that fire strongly for the
same feature map at a pre-selected convolution layer. We
use deconvolution [46] to project the top activations of
these clips back into image space. We visualize the gra-
dients causing the activiation together with the correspond-
ing cropped image sequences. Note that we did not do any
fine-tuning of C3D model on UCF101.

Figure 9 and 10 visualize deconvolutions of C3D learned
feature maps at the layers conv2a and conv3b. Visual-
izations of the same feature map are grouped together. For
figures 11, 12, 13, and 14, each figure presents the deconvo-
lutions of one learned feature map of the conv5b layer. Fi-
nally, figure 15 compares the deconvolutions of several C3D
conv5b feature maps with optical flows. As showed in
the visualizations, at early convolution layer conv2a, C3D
learns low-level motion patterns such as moving edges,
blobs, short changes, edge orientation changes, or color
changes. At a higher layer of conv3b, C3D learns bigger
moving patterns of corners, textures, body parts, and trajec-
tories. Finally, at the deepest convolution layer, conv5b,
C3D learns more complicated motion patterns such as mov-
ing circular objects, biking-like motions.

References
[1] M. Bendersky, L. Garcia-Pueyo, J. Harmsen, V. Josifovski, and

D. Lepikhin. Up next: retrieval methods for large scale related video
suggestion. In ACM SIGKDD, pages 1769–1778, 2014. 2

[2] O. Boiman and M. Irani. Detecting irregularities in images and in
video. IJCV, 2007. 1, 2

[3] T. Brox and J. Malik. Large displacement optical flow: Descriptor
matching in variational motion estimation. IEEE TPAMI, 33(3):500–
513, 2011. 8

[4] K. Derpanis, M. Lecce, K. Daniilidis, and R. Wildes. Dynamic scene
understanding: The role of orientation features in space and time in
scene classification. In CVPR, 2012. 8

[5] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recog-
nition via sparse spatio-temporal features. In Proc. ICCV VS-PETS,
2005. 2

[6] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell. Long-term recurrent convo-
lutional networks for visual recognition and description. CoRR,
abs/1411.4389, 2014. 6

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. Decaf: A deep convolutional activation feature for generic
visual recognition. In ICML, 2013. 2, 7

[8] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spacetime forests with
complementary features for dynamic scene recognition. In BMVC,
2013. 8

[9] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Bags of spacetime ener-
gies for dynamic scene recognition. In CVPR, 2014. 2, 8

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. arXiv
preprint arXiv:1311.2524, 2013. 2

[11] Y. Hanani, N. Levy, and L. Wolf. Evaluating new variants of motion
interchange patterns. In CVPR workshop, 2013. 7

[12] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler.
Learning human pose estimation features with convolutional net-
works. In ICLR, 2014. 2

Figure 9. Deconvolutions of C3D conv2a feature maps. Each group is a C3D conv2a learned feature map. First two rows: the learned
filters detect moving edges and blobs. The last row: the learned filters detect shot changes, edge orientation changes, and color changes.
Best viewed in a color screen.

[13] A. Jain, J. Tompson, Y. LeCun, and C. Bregler. Modeep: A deep
learning framework using motion features for human pose estima-
tion. In ACCV, 2014. 2

[14] V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helmstaedter,
K. Briggman, W. Denk, J. Bowden, J. Mendenhall, W. Abraham,
K. Harris, N. Kasthuri, K. Hayworth, R. Schalek, J. Tapia, J. Licht-
man, and H. Seung. Boundary learning by optimization with topo-
logical constraints. In CVPR, 2010. 2

[15] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks
for human action recognition. IEEE TPAMI, 35(1):221–231, 2013.
1, 2

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 1, 5

[17] Y. Jiang, J. Liu, A. Zamir, G. Toderici, I. Laptev, M. Shah, and
R. Sukthankar. THUMOS challenge: Action recognition with a large
number of classes, 2014. 2

[18] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei. Large-scale video classification with convolutional neural

networks. In CVPR, 2014. 1, 2, 3, 4, 5, 6
[19] A. Kläser, M. Marszałek, and C. Schmid. A spatio-temporal descrip-

tor based on 3d-gradients. In BMVC, 2008. 2
[20] O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf. Motion in-

terchange patterns for action recognition in unconstrained videos. In
ECCV, 2012. 7

[21] O. Kliper-Gross, T. Hassner, and L. Wolf. The action similarity la-
beling challenge. TPAMI, 2012. 7

[22] O. Kliper-Grossa, T. Hassner, and L. Wolf. The one shot similarity
metric learning for action recognition. In Workshop on SIMBAD,
2011. 7

[23] D. B. Kris M. Kitani, Brian D. Ziebart and M. Hebert. Activity fore-
casting. In ECCV, 2012. 1

[24] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, 2012. 1, 2

[25] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond
gaussian pyramid: Multi-skip feature stacking for action recognition.
CoRR, abs/1411.6660, 2014. 2, 6, 7

Figure 10. Deconvolutions of C3D conv3b feature maps. Each group is a C3D conv3b learned feature map. Upper: feature maps detect
moving corners and moving textures. Middle: feature maps detect moving body parts. Lower: feature maps detect object trajectories and
circular objects. Best viewed in a color screen.

[26] I. Laptev and T. Lindeberg. Space-time interest points. In ICCV,
2003. 1, 2

[27] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierar-
chical invariant spatio-temporal features for action recognition with
independent subspace analysis. In CVPR, 2011. 2

[28] Y. LeCun and Y. Bengio. Convolutional networks for images, speech,
and time-series. Brain Theory and Neural Networks, 1995. 2

[29] J. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici. Beyond short snippets: Deep networks for video
classification. In CVPR, 2015. 2, 4, 5, 6, 7

Figure 11. Deconvolutions of a C3D conv5b learned feature map which detects moving motions of circular objects. In the second last
clip, it detects a moving head while in the last clip, it detects the moving hair-curler. Best viewed in a color screen.

Figure 12. Deconvolutions of a C3D conv5b learned feature map which detects biking-like motions. Note that the last two clips have no
biking but their motion patterns are similar to biking motions. Best viewed in a color screen.

Figure 13. Deconvolutions of a C3D conv5b learned feature map which detects face-related motions: applying eye-makeup, applying
lipstick, and brushing tooth. Best viewed in a color screen.

Figure 14. Deconvolutions of a C3D conv5b learned feature map which detects balance-beam-like motions. In the last clip, it detects
hammering which shares similar motion patterns with balance beam. Best viewed in a color screen.

Figure 15. Deconvlotuions of C3D conv5b learned feature maps compared with optical flows. Optical flows fire at all of moving pixels
while C3D just pays attention to only salient motions. Best viewed in a color screen.

[30] P. Over, G. Awad, M. Michel, J. Fiscus, G. Sanders, W. Kraaij,
A. Smeaton, and G. Quenot. Trecvid’14–an overview of the goals,
tasks, data, evaluation and metrics. In TRECVID, 2014. 2

[31] X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual words and fu-
sion methods for action recognition: Comprehensive study and good
practice. CoRR, abs/1405.4506, 2014. 2, 6, 7

[32] X. Ren and M. Philipose. Egocentric recognition of handled objects:
Benchmark and analysis. In Egocentric Vision workshop, 2009. 2, 8

[33] S. Sadanand and J. Corso. Action bank: A high-level representation
of activity in video. In CVPR, 2012. 2

[34] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor
and its application to action recognition. In ACM MM, 2007. 2

[35] N. Shroff, P. K. Turaga, and R. Chellappa. Moving vistas: Exploiting
motion for describing scenes. In CVPR, 2010. 8

[36] K. Simonyan and A. Zisserman. Two-stream convolutional networks
for action recognition in videos. In NIPS, 2014. 2, 6, 7, 8

[37] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In ICLR, 2015. 3, 4

[38] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101
human action classes from videos in the wild. In CRCV-TR-12-01,
2012. 5, 7

[39] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised
learning of video representations using LSTMs. In ICML, 2015. 2, 6

[40] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional
learning of spatio-temporal features. In ECCV, pages 140–153.
Springer, 2010. 2

[41] C. Theriault, N. Thome, and M. Cord. Dynamic scene classification:
Learning motion descriptors with slow features analysis. In CVPR,
2013. 8

[42] S. Turaga, J. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman,
W. Denk, and S. Seung. Convolutional networks can learn to generate
affinity graphs for image segmentation. Neural Comp., 2010. 2

[43] L. van der Maaten and G. Hinton. Visualizing data using t-sne.
JMLR, 9(2579-2605):85, 2008. 6, 7

[44] H. Wang and C. Schmid. Action recognition with improved trajecto-
ries. In ICCV, 2013. 2, 5, 7, 8

[45] Q. P. X. Peng, Y. Qiao and Q. Wang. Large margin dimensional-
ity reduction for action similarity labeling. IEEE Signal Processing
Letter, 2014. 7

[46] M. Zeiler and R. Fergus. Visualizing and understanding convolu-
tional networks. In ECCV, 2014. 5, 6, 9

[47] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. Panda:
Pose aligned networks for deep attribute modeling. In CVPR, 2014.
1

[48] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning
deep features for scene recognition using places database. In NIPS,
2014. 1

